Tag Archives: nuclear waste

The Fate of Disused Highly Radioactive Sources

The International Atomic Energy Agency (IAEA) has helped remove 27 disused highly radioactive sources from five South American countries in a significant step forward for nuclear safety and security in the region. It was the largest such project ever facilitated by the IAEA.  The material, mainly used for medical purposes such as treating cancer and sterilizing instruments, was transported to Germany and the United States for recycling. Canada, where some of the sources were manufactured, funded the project upon requests for IAEA support from Bolivia, Ecuador, Paraguay, Peru and Uruguay.

The sealed Cobalt-60 and Caesium-137 sources pose safety and security risks when no longer in use...

Some of these sources were stored at hospitals for more than 40 years,” said César José Cardozo Román, Minister, Executive Secretary, Radiological Nuclear Regulatory Authority of Paraguay. “With this action, a problematic situation has been solved, improving safety for the public and environment and reducing the risk of malicious use and possible exposure to radioactive material.”

In recent years, the IAEA has assisted Bosnia and Herzegovina, Cameroon, Costa Rica, Honduras, Lebanon, Morocco, Tunisia and Uzbekistan in the removal of disused sources. The South American operation was the largest the IAEA has so far coordinated in terms of both the number of highly radioactive sources and countries involved.

Excerpts from IAEA Helps Remove Highly Radioactive Material from Five South American Countries, IAEA Press Release, Apr. 30, 2018

Related posts:

Radioactive Beaches: Fukushima at 2017

Kotohiki Beach, Japan. image from wikipedia

Six years after the Fukushima nuclear reactor disaster in Japan, radioactive material is leaching into the Pacific Ocean from an unexpected place. Some of the highest levels of radioactive cesium-137, a major by-product of nuclear power generation, are now found in the somewhat salty groundwater beneath sand beaches tens of kilometers away, a new study shows.

Scientists tested for radioactivity at eight different beaches within 100 kilometers of the plant, which experienced three reactor meltdowns when an earthquake and tsunami on March 11, 2011, knocked out its power. Oceans, rivers and fresh groundwater sources are typically monitored for radioactivity following a nuclear accident, but several years following the disaster, those weren’t the most contaminated water sources. Instead, brackish groundwater underneath the beaches has accumulated the second highest levels of the radioactive element (surpassed only by the groundwater directly beneath the reactor).

In the wake of the 2011 accident, seawater tainted with high levels of cesium-137 probably traveled along the coast and lapped against these beaches, proposes study coauthor Virginie Sanial, who did the work while at Woods Hole Oceanographic Institution in Massachusetts. Some cesium stuck to the sand and, over time, percolated down to the brackish groundwater beneath. Now, the radioactive material is steadily making its way back into the ocean. The groundwater is releasing the cesium into the coastal ocean at a rate that’s on par with the leakage of cesium into the ocean from the reactor site itself, Sanial’s team estimates.

Excerpts from Radioactive material from Fukushima disaster turns up in a surprising place, Science News, Oct. 2, 2017

See also Unexpected source of Fukushima-derived radiocesium to the coastal ocean of Japan

Related posts:

Disused, Dangerous and Nuclear

National inventory of DSRS in storage, awaiting disposal. Image from IAEA.

Most of radioactive waste arising from nuclear applications consists of disused sealed radioactive sources (DSRS). Radioactive sources are used in different devices in medical, industrial and agricultural facilities. They have to be accounted for and when they are no longer usable, they have to be recovered, dismantled, stored and, as the case may be, prepared for transportation. Therefore, countries with or without nuclear power programmes have to make sure they have the ability to properly manage them. The IAEA is supporting capacity building in both regulatory framework and operation and can support removal operations. The IAEA is also developing tools (mobile tool kits, mobile hot cells, transport packages) and supporting the strengthening of regional capabilities.

In an effort to scale up the safe and secure management of disused sealed radioactive sources (DSRS), the IAEA on September 19, 2017 introduced a new concept of Qualified Technical Centres.

“At the IAEA we receive a large number of requests for assistance in characterization, conditioning and removal of all categories of DSRS,” said Christophe Xerri, Director of the IAEA Division of Nuclear Fuel Cycle and Waste Technology, Xerri, Director, IAEA Division of Nuclear Fuel Cycle and Waste Technology  “The idea behind this initiative is to increase the worldwide capability to manage DSRS by encouraging countries with well-equipped centres and trained personnel to provide technical services for the management of DSRS, within their countries and regionally.”...

The IAEA regularly dispatches expert missions to Member States to provide advice and guidance for the recovery and conditioning of DSRS. The most recent missions include recovery and conditioning of DSRS in Honduras in July, in Ghana in August and in Malaysia in September 2017...

During the event, experts from several Member States highlighted recent projects and activities related to DSRS management. Participants learned details of a South American Source Removal Project, with 29 sources to be removed from five countries. The event also included presentations on national regulatory infrastructure for inventories of radioactive sources and progress made on the integration of mobile hot cell with borehole disposal system.

Excerpts from IAEA Announces Concept of Qualified Technical Centres for the Management of Disused Sealed Radioactive Sources, IAEA Department of Nuclear Energy, Sept. 19, 2017

Related posts:

Mishandling Nuclear Materials: who is to blame

Plutonium in can.

Plutonium capable of being used in a nuclear weapon, conventional explosives, and highly toxic chemicals have been improperly packaged or shipped by nuclear weapons contractors at least 25 times from 2012 to 2107 according to government documents.While the materials were not ultimately lost, the documents reveal repeated instances in which hazardous substances vital to making nuclear bombs and their components were mislabeled before shipment. That means those transporting and receiving them were not warned of the safety risks and did not take required precautions to protect themselves or the public, the reports say.

The risks were discovered after regulators conducted inspections during transit, when the packages were opened at their destinations, during scientific analysis after the items were removed from packaging, or – in the worst cases – after releases of radioactive contaminants by unwary recipients, the Center for Public Integrity’s investigation showed.  Only a few, slight penalties appear to have been imposed for these mistakes.

In the most recent such instance, Los Alamos National Laboratory – a privately-run, government-owned nuclear weapons lab in New Mexico – admitted five weeks ago that in June 2017  it had improperly shipped unstable, radioactive plutonium in three containers to two other government-owned labs via FedEx cargo planes, instead of complying with federal regulations that required using trucks to limit the risk of an accident... According to the initial explanation Los Alamos filed with the government on June 23, 2017 the lab used air transport because one of the other labs – located in Livermore, California ― needed the plutonium urgently.

The incident – which came to light after a series of revelations by the Center for Public Integrity about other safety lapses at Los Alamos ― drew swift condemnation by officials at the National Nuclear Security Administration in Washington, D.C., which oversees U.S. nuclear weapons work. It provoked the Energy Department to order a three-week halt to all shipments in and out of Los Alamos, the largest of the nuclear weapons labs and a linchpin in the complex of privately-run facilities that sustains America’s nuclear arsenal.

In total, 11 of the 25 known shipping mistakes since July 2012 involved shipments that either originated at Los Alamos or passed through the lab. Thirteen of the 25 incidents involved plutonium, highly-enriched uranium (another nuclear explosive), or other radioactive materials. Some of the mislabeled shipments went to toxic waste dumps and breached regulatory limits on what the dumps were allowed to accept, according to the reports.

The Nuclear Regulatory Commission, which arguably has more experience with the handling and transport of radioactive materials than any other government entity, has no jurisdiction over nuclear weapons-related work by the National Nuclear Security Administration (NNSA) or its contractors. Instead, the Energy Department (of which the NNSA is a semi-autonomous part) regulates all the sites on its own, as well as the contractors that manage them.

Excerpts from Patrick Malone, Nuclear weapons contractors repeatedly violate shipping rules for dangerous materials, Center for Public Integrity, Aug. 1, 2017

See also the Nuclear Weapons Establishment, Los Alamos to WIPP: the full story of nuclear waste mismanagement

Related posts:

Sitting Still Nuclear Waste

Several options are available to immobilise waste resulting from nuclear fuel reprocessing. One of these is vitrification - a mature technology which has been used for high-level nuclear waste immobilization for over 50 years...Argentina is considering vitrification as a viable option for dealing with its high-level nuclear waste. The Argentine National Programme for Radioactive Waste Management aims to build capacities to implement vitrification processes for radioactive waste....
The vitrified radioactive waste is extremely durable, and ensures a high degree of environmental protection. Although the process of vitrification requires a high initial investment and then operational costs, waste vitrification has important advantages: it significantly reduces the volume of waste, and allows simple and cheap disposal possibilities. The overall cost of vitrified radioactive waste is usually lower than alternative options when transportation and disposal expenses are taken into account. For this reason, the process is very attractive for sates seeking effective and reliable immobilisation solutions for their radioactive waste stocks.

Excerpts from Taking a Closer Look at Vitrification: How the IAEA Helps Countries Utilise Advanced Immobilisation Technologies, IAEA Press Release, Mar. 24, 2017

Related posts:

The Nuclear Waste Dumpers-TENORM

landfill-with-radioactive-waste-sign

The state of Kentucky announced on Mondy November 14, 2016  that it will seek large civil penalties against various companies and individuals responsible for the dumping of radioactive waste in landfills located in Estill and Greenup counties...  In some cases, the fines are greater than $2 million...The penalties are the result of illegal activity discovered in landfills in early 2016 and target the processors, transporters and brokers responsible for the transfer of those materials into Kentucky landfills. Evidence shows the activity began as early as May 2015 and involved the illegal transport and disposal of “technologically enhanced naturally occurring radioactive material” or “TENORM,” which is a byproduct of pressurized oil drilling or fracking...

The Department for Public Health, within the cabinet, is seeking penalties against Advanced TENORM Services of West Liberty in the amount of $2.65 million; Cory Hoskins, owner of BES of West Liberty, $2.65 million. BES does business as Advanced Tenorm Services, and Hoskins was listed as the owner of BES, according to the state.

Other companies to be fined include Fairmont Brine Processing LLC, of Pittsburgh, $1.012 million; Mountain States Environmental of Lancaster, Ohio, $615,000; L.R. Daniels Transportation, Inc. of Ashland $612,000; Pressure Technology of Ohio of Norwich, Ohio, $338,00; Nuverra Environmental Solutions, Inc. of Scottsdale, Ariz., $143,000; E&R Energy, LLC of Norwich, Ohio ,$140,000; and Cambrian Wells Services, LLC in Norwich, Ohio $30,000.

Excerpts from Kentucky radioactive waste dumpers could face millions in fines, www. kentucky.com, Nov. 14, 2016

 

Related posts:

Isolating Nuclear Waste for 15 Billion Years

Hanford Nuclear Waste Storage Tanks

Professor Ashutosh Goel at Rutgers University is the primary inventor of a new method to immobilize radioactive iodine in ceramics at room temperature and six glass-related research projects ...Developing ways to immobilize iodine-129 found in nuclear waste,...is crucial for its safe storage and disposal in underground geological formations. The half-life of iodine-129 is 15.7 million years, and it can disperse rapidly in air and water, according to the U.S. Environmental Protection Agency. If it’s released into the environment, iodine will linger for millions of years. Iodine targets the thyroid gland and can increase the chances of getting cancer.

Among Goel’s major funders is the U.S. Department of Energy (DOE), which oversees one of the world’s largest nuclear cleanups following 45 years of producing nuclear weapons. The national weapons complex once had 16 major facilities that covered vast swaths of Idaho, Nevada, South Carolina, Tennessee and Washington state, according to the DOE.

The agency says the Hanford site in southeastern Washington, which manufactured more than 20 million pieces of uranium metal fuel for nine nuclear reactors near the Columbia River, is its biggest cleanup challenge.  Hanford plants processed 110,000 tons of fuel from the reactors. Some 56 million gallons of radioactive waste – enough to fill more than 1 million bathtubs – went to 177 large underground tanks. As many as 67 tanks – more than one third – are thought to have leaked, the DOE says. The liquids have been pumped out of the 67 tanks, leaving mostly dried solids...

“What we’re talking about here is highly complex, multicomponent radioactive waste which contains almost everything in the periodic table,” Goel said. “What we’re focusing on is underground and has to be immobilized.”

One of his inventions involves mass producing chemically durable apatite minerals, or glasses, to immobilize iodine without using high temperatures. A second innovation deploys synthesizing apatite minerals from silver iodide particles. He’s also studying how to immobilize sodium and alumina in high-level radioactive waste in borosilicate glasses that resist crystallization.

Excerpt from Professor Ashutosh Goel Invents Method to Contain Radioactive Iodine, Rutgers School of Engineering Press Release, Nov. 2016

Related posts:

Cleaning Radioactive Water

tritium. Image from wikipedia

Russia's nuclear energy giant Rosatom's subsidiary RosRAO has created a prototype water decontamination plant for use at Tokyo Electric Power Co. Holdings' Fukushima Daiichi nuclear power station -- the site of Japan's largest nuclear disaster in March 2011. The scrubbing facility, unveiled in June 2014, is capable of removing tritium, or radioactive hydrogen, from nuclear-tainted water, something beyond the capabilities of the Fukushima plant's current cleanup equipment. Distillation and electrolysis isolate and concentrate the isotope, which is then locked away in titanium. Experiments under conditions similar to those on the ground reportedly show the technology cutting wastewater's radioactive material content to one-6,000th the initial level, making it safe for human consumption or release into the ocean.

Duplicating the facility near the Fukushima site and running it for the five years necessary to process 800,000 cu. meters of contaminated water would cost around $700 million in all. Companies in Japan and the U.S. are at work on their own facilities for tritium disposal, but the Russian plan's cost and technological capability make it fully competitive, according to the project's chief.

Rosatom has made other overtures to Japan. Executives from a mining and chemical unit have visited several times this year for talks with Japanese nuclear companies, aiming to cooperate on decommissioning the Fukushima plant and upgrading a reprocessing plant in Aomori Prefecture for spent nuclear fuel. Russia has amassed a wealth of expertise dealing with damaged nuclear reactors in the wake of the Chernobyl disaster, and would like Japan to draw on that knowledge, the subsidiary's chief executive said.

Revving up nuclear technology exports is essential to re-energizing Russia's domestic industry and breaking free of dependence on the resource sector, Moscow has decided. The nuclear business, along with the space industry, is one of the few tech-intensive sectors where the country is internationally competitive. President Vladimir Putin has leaned more heavily on leaders in Europe and emerging countries in recent years to agree to deals with Russia's nuclear companies.

In Japan, the public has grown wary of nuclear energy since the accident, leaving demand for new plants in the country at next to nil. Yet Japan has more than 10 reactors slated for decommissioning, creating a market worth up to 1 trillion yen ($9.42 billion) by some calculations. Russia aims to use cooperation on the Fukushima plant to crack the broader market and grow its influence, a source at a French nuclear energy company said...

But Japanese Prime Minister Shinzo Abe nevertheless visited Russia in May 2016 for top-level talks despite U.S. objections, eager to make progress on territorial disputes over islands north of Hokkaido. Preparation is underway for another summit in the far-eastern city of Vladivostok in September 2016, as well as a visit by Putin to Japan before the year is out.
Excerpts from TAKAYUKI TANAKA, Japan nuclear cleanup next target in Russian economic offensive, Nikkei Asian Review, July 24, 2016

Leaking Radioactive Water into the Ocean

Related posts:

Chernobyl Nuclear Accident from 1986 to 2016

Chernobyl containment. . image from EBRD

A workforce of around 2,500 people is finishing a massive steel enclosure that will cover Chernobyl’s reactor 4, where the radioactive innards of the nuclear plant are encased in a concrete sarcophagus hastily built after the disaster.  If all goes to plan, the new structure—an arch more than 350 feet high and 500 feet long—will be slid into place late next year over the damaged reactor and its nuclear fuel, creating a leak-tight barrier designed to contain radioactive substances for at least the next 100 years.

The project, known as the New Safe Confinement,  is a feat of engineering.  [see also the Chernobyl Gallery] It will take two or three days to slide the 36,000-ton structure into place. The arch, which looks something like a dirigible hangar, is large enough to cover a dozen football fields. “You could put Wembley Stadium underneath here, with all the car parks,” said David Driscoll, the chief safety officer for the French consortium running the construction site.

Three decades ago, an army of workers scrambled to build a concrete sarcophagus around Chernobyl Reactor 4, which released a radioactive plume after a reactor fire and explosion on April 26, 1986.  At least 30 people died as an immediate result of the accident, which contaminated parts of Ukraine, Belarus and Russia and sent radioactive dust and debris over Europe. Pripyat, the company town of 50,000, was completely evacuated.

Emergency workers and evacuees received doses of radiation significantly above natural background levels, according to the World Health Organization. Researchers acknowledge high levels of thyroid cancer among people who were children at the time of the accident, from exposure to radioactive iodine...

Nicolas Caille, project director for Novarka, the consortium of Vinci SA and Bouygues SA, the French contractors running the project, said about 1,000 people work on a typical shift at the construction site, keeping to a schedule of 15 days in and 15 out....

A new facility to safely and securely store spent nuclear rods is being built at the nuclear power complex. The Interim Spent Fuel Storage Facility, or ISF2, is intended to store spent fuel rods for a minium of 100 years.....The Liquid Radioactive Waste Treatment Plant in Chernobyl...retrieves highly active liquids from their current tanks, processes them into a solid state and moves them to containers for long-term storage. ...

Wildlife has flourished in the forest [surrounding Chernobyl], which is largely off limits to humans. Officials say species such as lynx, wild boar, wolves, elk, bear and European bison have rebounded.

Excerpts from Nathan Hodge, 30 Years After Chernobyl Disaster, an Arch Rises to Seal Melted Reactor, Wall Street Journal, Apr. 25, 2016

Related posts:

Nothing Outlasts the Fukushima Disaster: it keeps going and going….

energizer

As Prime Minister Shinzo Abe moves to reopen Japanese nuclear plants that were all shut after the disaster on March 11, 2011, a distrustful public is pushing back. A court on March 9, 2016ordered Kansai Electric Power Co. to halt two of the four reactors that have been restarted, saying the utility had failed to show the public they were safe. The utility called the ruling “unacceptable” and said it would appeal....However, near the ruined Fukushima reactors......Growing swaths of land are covered with black bags full of slightly radioactive soil.

The hardest parts of the cleanup haven’t even begun. Tepco, as Tokyo Electric is known, has yet to draw up plans for removing highly radioactive nuclear fuel that melted through steel containment vessels and now sits at the bottom of three Fukushima reactors.The company estimates that the nearly $20 billion job of decommissioning the plant could take another three or four decades. That is not counting damages and cleanup costs expected to reach some $100 billion or more, including about $50 billion paid to evacuees. Legal wrangling over the disaster continues. In February 2016, three former Tepco executives were charged with professional negligence.

Tepco also is working to reduce a total 400 tons of rain and groundwater that breach the plant’s defenses daily, becoming contaminated and requiring treatment and storage. But a wall of frozen earth meant to reduce the flow has run into resistance from regulators.On large parts of the site, workers can now walk around without full-face shields or hazmat suits, using simple surgical masks for protection.Fukushima was once a prized post for elite engineers and technicians in Japan’s nuclear heyday. Now, unskilled laborers make up the bulk of a workforce of about 6,000 workers, down from a peak of 7,450 in 2014. “There’s a constant stream of people who can’t find work elsewhere,” said Hiroyuki Watanabe, a Communist city councilman in Iwaki, about 30 miles away. “They drift and collect in Fukushima.”...

Looking ahead, the biggest issue remains the reactors. No one knows exactly where the molten nuclear debris sits or how to clean it. Humans couldn’t survive a journey inside the containment vessels, so Tepco hopes to use robots guided by computer simulations and video images. But two attempts had to be abandoned after the robots got tripped up on rubble.“The nature of debris may depend on when the nuclear fuel and concrete reacted,” said Pascal Piluso, an official of France’s Alternative Energies and Atomic Energy Commission. “We are talking about extremely varied and complex debris.”....A government panel recently questioned Tepco’s ability to tackle the daunting task of decommissioning while seeking profit for its shareholders. The disaster nearly pushed the company to bankruptcy, prompting the government to buoy it with ¥1 trillion ($9 billion  (really????) in public money and pledge government grants and guarantees to help Tepco compensate victims.”...

Excerpts  from Fukushima Still Rattles Japan, Five Years After Nuclear Disaster, Wall Street Journal, Mar. 8, 2016

Related posts: